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NON-PARAMETRIC ESTIMATION  

 

• To avoid presenting topics that will be discussed in Survival Models and Life Contingencies (2nd 

semester) and Actuarial Topics (3rd semester)  we will only cover parts of chapters 11 (13) and 12 (14) 

of Loss Models book: 

o From chapter 11 (13) we will cover section 2 until example 11.1 (13.1) and section 3 (For 

exercise 11.1 skip “Nelson-Aalen estimate) 

o From chapter 12 (14) we will cover section 2 until example 12.8 (14.11) and section 3. In section 

2 only the first 2 exercises are covered.  
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Introduction  

• What is non-parametric estimation? 

• Which information is available? 

• In Loss Models the first chapter uses complete information while the second uses modified data 

(censored and/or truncated); 

• Censoring and truncation are problems that will be discussed in the frequentist estimation 

framework. 
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• Definition 12.1 (14.1) – An observation is truncated from below (also called left truncated) at d if when it 

is below d it is not recorded, but when it is above d it is recorded at its observed value.  

An observation is truncated from above (also called right truncated) at u if when it is above u it is not 

recorded, but when it is below u it is recorded at its observed value.  

An observation is censored from below (also called left censored) at d if when it is below d it is  recorded 

as being equal to d, but when it is above d it is recorded at its observed value.  

An observation is censored from above (also called right censored)at u if when it is above u it is recorded 

as being equal to u, but when it is below u it is recorded at its observed value.  

• Comments: 

• Truncation - In insurance, truncation from below can happen when there is a deductible: A 

policyholder will not report a claim whose value is below the deductible. However the knowledge 

of “small” claims (number and amounts) can be important for a correct evaluation of the policy 

risk.  
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• Censoring – Let y  be the “correct” value, c the censoring point and x  the available data. 

 Censoring from below  




>

≤
=

cyy

cyc
x  

 Censoring from above  




≥

<
=

cyc

cyy
x  

 In insurance censoring from above is quite usual. If a policy pays no more than 10000 €  

for a claim and if the insurance company only records the payments made, any time a loss 

is above 10000 € the amount of the claim will be unknown but we will know that a 

payment of 10000 € has happened. 

 The censoring points could be known (defined by the insurance policy) or “random”. 

Random censoring occurs for instance when a policyholder decides to surrender his policy 

(data set D1). In any case we will know the censoring points that can differ from 

observation to observation. 

o From a statistical point of view, truncation is a more severe limitation than censoring. 

o When nothing else is said, truncation will mean left truncation and censoring right censoring. 
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The empirical distribution for complete individual data 

• Let us define the indicator function of a set A by 




∈

∉
=∈=
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Ax
AxIxI A

1

0
)()(   

• Now, let us assume that we observed a sample of size n, ( )nxxx ,,, 21 � , from a given population 

• Definition 11.5 (13.5) – The empirical distribution function (also known as empirical cumulative 

distribution function or ecdf) is   
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• Comments: 

1. Whatever the type (discrete, continuous, mixed) of the random variable in the “theoretical” 

model, the empirical distribution function behaves as a distribution function of a discrete 

random variable. We will return to this topic later when discussing KERNEL estimation. 

2. If we are interested in the survival function ( ) 1 ( )
n n

S x F x= − ;  
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• Example: Define the empirical cumulative distribution function when the following random sample 

has been observed (1.1; 2.8; 1.5; 2.4; 3.1) 

• Klugman et al (Loss Models) introduce the concept of empirical probability function as  

n

xxI

n
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xf

n

i i

n
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=

=
=

= 1
)(obs ofnumber 

)( . 

• If we are sampling from a continuous random variable, the probability that we observe a tie is 0 

(exceptions arise due to the rounding of the observed values) and consequently  in many situations 

nxfn /1)( = ; 

• The empirical distribution function is a much more important concept in statistical inference than the 

empirical probability function.  

• Example 11.1 (13.1) – Provide the empirical distribution functions for the data in data sets A and B. 

For data set A also provide the empirical probability function. For data set A assume that all seven 

drivers who had five or more accidents had exactly five accidents. 
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Data Set A 

 

Number of 

Accidents 

Number of 

drivers 

0 81714 

1 11306 

2 1618 

3 250 

4 40 

5 or more 7 

 
 

 

Total number  

of observations                       94935 

 

 

Number of accidents per year per policy 

1956-1958 – Dropkin paper 
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Data Set B - Amounts paid on 

Workers Compensation medical 

benefits – artificial data 

 

27 82 115 126 155 

161 243 294 340 384 

457 680 855 877 974 

1193 1340 1884 2558 15743 
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Data set B - Empirical distribution function using R 

> # read data – Data set B 

> x=c(27,82,115,126,155,161,243,294,340,384,457,680,855,877,974, 

1193,1340,1884,2558,15743) 

> F20=ecdf(x) 

> summary(F20) # Gives the mean and the 5 numbers summary 

                 To be used only if all values in x are unique!!! 

Empirical CDF:    20 unique values with summary 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

   27.0   159.5   420.5  1424.0  1029.0 15740.0  

> quantile(F20,c(0.25,0.5,0.75)) 

    25%     50%     75%  

 159.50  420.50 1028.75  

> > plot(F20) 
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Data Set A - Empirical distribution function using R 

> # read data 

>x=c(rep(0,81714),rep(1,11306),rep(2,1618),rep(3,250),rep(4,40), 

rep(5,7)) 

> length(x) 

[1] 94935 

> F94935=ecdf(x) 

>  summary(F94935) # Be very careful with the results!!!! 

F94935 is treated as an array with 6 

observations equally distributed 

Empirical CDF:    6 unique values with summary 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

   0.00    1.25    2.50    2.50    3.75    5.00  

# To get the empirical quartiles (all equal to 0 in this example) do 

> quantile(x,c(0.25,0.5,0.75)) 

25% 50% 75%  

  0   0   0 

>plot(F94935) 
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> # Empirical probability function 

> z=rep(1,length(x)); zz=tapply(z,x,sum) 

> zz 

    0     1     2     3     4     5  

81714 11306  1618   250    40     7  

> # function tapply: apply the function (sum in our case) to each 

group of element of z. The groups are defined using the factor x 

> values=as.numeric(names(zz)) 

> values 

[1] 0 1 2 3 4 5 

> EmpProb=as.numeric(zz)/sum(as.numeric(zz)) 

> EmpProb 

[1] 8.607363e-01 1.190920e-01 1.704324e-02 2.633381e-03 4.213409e-04 

[6] 7.373466e-05 

> F=cumsum(EmpProb) 

> F 

 [1] 0.8607363 0.9798283 0.9968715 0.9995049 0.9999263 1.0000000 
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Empirical distribution for grouped data 

• For grouped data it is not possible to construct the empirical distribution function. The main idea is to 

approximate it using an intuitive approach: 

o  Wherever it is possible (at the groups  boundaries) obtain the value of the empirical 

distribution; 

o Connect those points using a linear interpolation (other interpolation methods are possible). 

When using the linear interpolation we are assuming a uniform behavior inside each group. 

• Let the group boundaries be kccc <<< �10 , i.e. group j is limited by 1−jc  and jc (often 00 =c  and 

kc = ∞ ) and let us denote by jn  the number of observations in group j.  Obviously 
1

k

jj
n n

=
= . 

• It is straightforward to see that  =
=

j

i ijn nncF
1

)/1()( , kj ,,2,1 �=  and that 0)( 0 =cFn . 

• Treatment of the group boundaries: No rule is given. If the underlying variable is continuous, as it is 

generally the case, there is no real problem. For other situations, the best solution is to use group 

boundaries such that we can guarantee that the observed values are not equal to group boundaries. 
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• Definition 11.8 (13.8) – For grouped data the distribution function obtained by connecting the values of 

the empirical distribution function at the group boundaries with straight lines is called the ogive. The 

formula is  
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• Comments: 

o As this function is differentiable at all points except group boundaries, the (empirical) density 

function can be obtained. To specify the density function at the boundaries it is arbitrarily made 

right continuous. 

o We can re-write the empirical distribution function as  

x
cc

cFcF

cc

cFccFc
xF

jj

jnjn

jj

jnjjnj

n

1

1

1

11 )()()()(
)(

−

−

−

−−

−

−
+

−

−
= ,  jj cxc <≤−1  

1 1 1

1 1

1 1 1

1 1

( ) ( ) ( ) ( )
( ) 1 ( ) 1

( ) ( ) ( ) ( )
      

j n j j n j n j n j

n n

j j j j

j n j j n j n j n j

j j j j

c F c c F c F c F c
S x F x x

c c c c

c S c c S c S c S c
x

c c c c

− − −

− −

− − −

− −

− −
= − = − −

− −

− −
= −

− −

,  jj cxc <≤−1  
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• Definition 11.9 (13.9) – For grouped data the empirical density function can be obtained by 

differentiating the ogive. The resulting function is called a histogram. The formula is  
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• Histograms and computer programs – be careful when classes do not have equal length 

• Example 11.5 (13.5) – Construct the ogive and histogram for data set C. Data set C is a random 

sample of payments from 227 claims from a general liability insurance. Data is classified by payment 

range. 

Payments 0-7500 7500-

17500 

17500- 

32500 

32500- 

67500 

67500- 

12500 

125000- 

300000 

>300000 

Nº policies 99 42 29 28 17 9 3 

 

Use EXCEL to define the empirical distribution function 

Repeat the task using R. Then use the actuar library. 

Challenging question: Are you able to write a function like ogive? 
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Using library actuar 

> library(actuar) 

Attaching package: 'actuar' 

> # 1000000 chosen arbitrarily 

> x=c(0,7500,17500,32500,67500,125000,300000,1000000) # breaks 

> y=c(99,42,29,28,17,9,3)  # counts 

> a=ogive(x,y) 

> a 

Ogive for grouped data  

Call: ogive(x, y) 

    x =      0,   7500,  17500,  ...,  3e+05,  1e+06 

 F(x) =      0, 0.43612, 0.62115,  ..., 0.98678,      1 

> plot(a) 

> a(1000) 

[1] 0.05814978 

> a(7500) 

[1] 0.4361233 
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> lb=x[1:(length(x)-1)]; ub=c(lb[2:length(lb)],NA) 

> a=cumsum(y)/sum(y);  

> la=c(0,a[1:(length(a)-1)]); ua=a[1:length(a)] 

> const=(ub *la-lb*ua)/(ub-lb) 

> xcoef=(ua-la)/(ub-lb) 

> ogive_table=data.frame(lower_bound=lb,upper_bound=ub, 

constant=const,x_coef=xcoef) 

> ogive_table 

 lower_bound upper_bound  constant        x_coef 

1          0        7500 0.0000000 5.814978e-05 

2       7500       17500 0.2973568 1.850220e-05 

3      17500       32500 0.4720999 8.516887e-06 

4      32500       67500 0.6343612 3.524229e-06 

5      67500      125000 0.7843325 1.302432e-06 

6     125000      300000 0.9188169 2.265576e-07 

7     300000          NA        NA           NA 

> # empirical density in column 4 of ogive_table (x_coef) 

> # To build array z choose an arbitrarily value in each class 

> z=c(rep(5000,99),rep(10000,42),rep(20000,29),rep(50000,28), 

rep(70000,17),rep(150000,9),rep(400000,3)) 

> b=hist(z,breaks=x) 
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> hist(z,breaks=x,xlim=c(0,125000)) 
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The empirical survival function (from chapter 12 (14)) 

 

• Let us consider a random sample ),,,( 21 nXXX �  and let us define the estimator of the empirical 

survival function  

{ }*

1

1 1
( ) # ( )

n x
n i ii

N
S x X x I X x

n n n=
= > = > = ,  0>x , 

where { }  =
>=>=

n

i iix xXIxXN
1

)(# . It is straightforward to see that ))(;(~ xSnbN x . If we 

consider an observed sample the corresponding estimate is 

{ }
n

n
xxI

n
xx

n
xS xn

i iin =>=>=  =1
)(

1
#

1
)( , 0>x . 

Following Loss Models, from now on we will use the same notation for the estimator, 
*
( )nS x ,  and 

the estimate, ( )nS x . Both will be denoted by ( )nS x . 
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• Problem 1 – How to estimate an unconditional probability like )Pr( bXa ≤< ? 

Noting that )()()Pr()Pr()Pr( bSaSbXaXbXa −=>−>=≤<  a possible estimator is given by 

( ]^
,

Pr( ) ( ) ( )
a ba b

n n

NN N
a X b S a S b

n n

−
< ≤ = − = = .  

Defining ( ]baN ,  as the number of observations in the sample that fall in the interval ( ]ba, . 

As ( ] ))()(;(~, bSaSnbN ba − , it is straightforward to obtain the expected value and the variance of the 

estimator.  

 Estimate: 
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a X b S a S b

n n

−
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 Expected value of the estimator: 
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  Unbiased 

 Variance of the estimator: 
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• Problem 2 – How to estimate a conditional probability like xxy q−  

( ) ( )
( )

( ) )(

)()(
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Pr
|Pr|Pr

xS

ySxS

xX

yXx
xXyXxXxxyXqxxy

−
=
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≤<
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The “natural” estimate is 
x
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−
=
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)()(
ˆ , assuming that 0)( >xSn .  

The corresponding estimator is 
x
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xxy
N

NN
q

−
=− ˆ . This estimator do not have neither expected value 

nor variance since 0)0Pr( >=xN . 

 

The usual solution 

Assume that )()( xSxS n=  (or equivalently that xx nN = ), given that 0>xn  .  Now the estimator is 

x
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xxy
n
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−
=− ˆ  but the distribution of yN  (and then the distribution of )(ySn ) is conditioned by 

)()( xSxS n= . The estimator is still unbiased and   
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The estimate of the variance is ( ) ( )yxy
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How does it work? 

  

Using the condition )()( xSxS n=  is equivalent to consider a sub-sample with all the observations 

greater than x  and to estimate the probability of the variable being greater than y .  

The sub-sample has xn  observations and we get the conditional estimator, 
x

y

x

yx

xxy
n

N

n

Nn
q −=

−
=− 1ˆ .  

Remember that, in this framework, ))(/)(,(~ xSySnbN xy . 

The variance of 
x

y

n

N
,  is estimated using the usual procedure applied to the sub-sample, i.e. 
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As it is straightforward to see, ( )ˆ ˆ ˆˆvar var 1 var
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   
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• Example 12.4 (14.5) – Using the full information of data set D1, empirically estimate 2q  and estimate 

the variance of this estimator. 

2=x , 3=y , 30=n , 292 =n , 273 =n  

06897.0
29

2

29

2729
ˆ2 ≈=

−
=q  

( ) 002214.0
29

)2729(27
30/29)2(|ˆrâv

32 ≈
−×

==Sq  

 

• Example 12.5 (14.6) – Using data set B, empirically estimate the probability that a payment will be at 

least 1000 when there is a deductible of 250. 

Let X  be the value of a claim amount. Since there is a deductible of 250 we want to estimate 

( )250|1250Pr >>= XXp . Since there is a deductible we only have 13 observations 

1250

250

(1250) 4
ˆ 0.3077

(250) 13

n

n

S n
p

S n
= = = ≈  

016386.0
13

94
)ˆr(âv

3
≈

×
=p  

Note that this variance is conditional to the existence of observations above the deductible.  
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Empirical estimation of probabilities 

Let us consider a discrete random variable and let us assume that we want to estimate )Pr()( jj xXxp == . 

Let jN  be the number of times the value jx  was observed in a sample of size n . As it is straightforward to 

see ))(;(~ jj xpnbN . 

The empirical estimator is nNxp jjn /)( = . Consequently 

( ) )()( jjn xpxpE = , the estimator is unbiased 

( )
( )
n

xpxp
xp

jj

jn

)(1)(
)(var

−×
= .  The estimator is consistent. 

The estimate of the variance is given by ( )
( )

3

)
)(râv

n

nnn
xp

jj

jn

−×
=  

Note that the usual approximation from the binomial to the normal distribution can be used to get a 

confidence interval for )( jxp . 

Note also that similar results can be obtained for a continuous random variable when considering the 

probability of a particular event. 
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• Example 12.7 (14.10) – For Data Set A determine the empirical estimate of )2(p  and estimate the 

variance of the estimator. 

94935=n   017043.094935/1618)2( ≈=np   

( )
( ) 7

3
1076466.1

94935

)1618949351618
)2(râv

−×≈
−×

=np  

 

• Example 12.8 (14.11) – Use (10.3) and (10.4)  –  (12.3) and (12.4)  –  to construct approximate 95% 

confidence intervals for )2(p  using Data Set A 

First approximation using (10.4):  
( )

)1;0(~
/)2(1)2(

)2()2(
n

npp

pp

nn

n
�

−×

−
 

Confidence interval: ( ) nppp nnn /)2(1)2(96.1)2( −××± , i.e. (0.01622; 0.01789) 

Second approximation using (10.3):  
( )

)1;0(~
/)2(1)2(

)2()2(
n
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ppn
�

−×

−
 

□ Confidence interval: 
( )2

222

96.12

)2(4)2(496.196.196.1)2(2

+

−+±+

n

pnpnpn nnn
, i.e. (0.01624; 0.01789) 
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Empirical survival distribution for grouped data 

Let Y  be the number of observations in the sample (size n) whose values are less than or equal to 1−jc  and 

let Z  be the number of observations whose value are less than or equal jc  but greater than 1−jc .  

• Then, for jj cxc <≤−1 , we have 
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( )1
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n

Y
cF jn =− )( 1  and 

n

ZY
cF jn

+
=)(  . 

• Now the marginal distributions of Y  and Z  are still binomial –  1~ ( ;1 ( ))jY b n S c −−  and 

1~ ( ; ( ) ( ))j jZ b n S c S c− −   – but the joint distribution is a multinomial (trinomial) distribution (Y  and Z  

are not independent). Then 

1( ) (1 ( ))jE Y n S c −= − ; 1 1var( ) (1 ( )) ( )j jY n S c S c− −= − ; 

 1( ) ( ( ) ( ))j jE Z n S c S c−= − ; 1 1var( ) ( ( ) ( ))(1 ( ) ( ))j j j jZ n S c S c S c S c− −= − − + ; 

1 1cov( , ) (1 ( ))( ( ) ( ))j j jY Z n S c S c S c− −= − − −  
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• The Expected value and variance  of the estimator are given by 
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• For the density estimate we get 
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Example 12.6 (14.8) – For data set C, estimate )10000(S , )10000(f  and the variance of your 

estimators. 

Estimates 

51762.0
10000227

2500421000099
1)10000( ≈

×

×+×
−=nS  

5
1085022.1

10000227

42
)(

−×≈
×

=xfn  

Estimates for the variance of the estimators 

82379.55
227

12672
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99
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128
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22907.34
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185
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227)r(âv ==××=Z  

31720.18
227

4158

227

99

227

42
227),v(ôc −=−=××−=ZY  

( )

2 2

2 2

12672 7770 4158
10000 2500 2 10000 2500

227 227 227ˆvar ( ) 0.000947127
227 10000

nS x

× + × − × × ×
= ≈

×
 

( )ˆvar ( ) 0.030775nS x ≈  

A 95% confidence interval for )10000(S  is given by (0.45730 ; 0.57794) 
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KERNEL DENSITY MODELS 

• Although the empirical distribution converges to the distribution of the random variable, as ∞→n , a 

main point remains: for finite samples the empirical distribution is always discrete, even if the 

underlying variable is continuous. This problem is more annoying when the sample size is moderate. 

• Our aim is to smooth, using non parametric methods (i.e. ignoring the functional form of the density), 

the empirical distribution to obtain an estimate of the continuous density (or distribution) function.  

 

• Definition 12.2 (14.2) – A kernel density estimator of a distribution function is  

 =
=

k

j yj xKypxF
j1

)()()(ˆ  

And the estimator of the density function is 

 =
=

k

j yj xkypxf
j1

)()()(ˆ . 

The function )(xk y  is called the kernel.  
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• Comments 

o The kernel is a non-negative real-valued integrable function satisfying 1)( =
∞+

∞−
dxxk y  to 

guarantee that the kernel method originates a density function. We will also have, 

 ∞−
=

x

yy duukxK )()( . 

□Question: How can we guarantee that ˆ ( )f x  is a density function? 

o In much cases we impose that ydxxkx y =
∞+

∞−
)( , that is the expected value is unchanged by the 

kernel.  

o )( jyp  is the probability assigned to the value jy , kj ,,2,1 �= , by the empirical distribution. : If 

all the sample values are unique we get ( ) 1/jp y n=  and then  =
=

n

i x xKnxF
i1

)()/1()(ˆ  and 

 =
=

n

i x xknxf
i1

)()/1()(ˆ  respectively. 
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• Definition 12.3 (14.3) (using a different notation) 

o Uniform kernel:  

( ) ( ) ( ) ( )
1 1

0

( ) 2 2 1/ (2 )

0

y

x y b

k x b I x y b b I y b x y b b y b x y b

x y b

− −

< −


= − ≤ = − ≤ ≤ + = − ≤ ≤ +
 > +

 

o Triangular kernel:  

2

22

0

( ) /
( ) ( / 1)

( ) /

0

y

x y b

x y b b y b x yb y x
k x I y x b

y b x b y x y bb

x y b

< −
 − + − ≤ ≤− − 

= − ≤ = 
+ − ≤ ≤ +

 > +

 

o Gamma kernel: ( ) )(
)()/(

)( ;0

/1

xI
y

ex
xk

yx

y ∞+

−−

Γ
=

αα α

αα

  

Gamma density with mean y  and variance α/2
y . The lesser α  the smoother the kernel. 

How to choose α ? One can use  
2

4 2
ˆ ˆ( ' / ' ) 1nα µ µ= −  (Typo in the book)  

Remember that ˆ ( )
k

k j j
y p yµ′ =  
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• Comments:  

o b is called the bandwidth . The higher is b the smoother will be the kernel density. 

o The first and second kernels are symmetric around y. In symmetric kernels the bandwidth is usually 

much more important than the choice of a particular kernel.  

o The third kernel is asymmetric and α  plays a role similar to the bandwidth. Note that the gamma 

kernel can be used only with positive valued random variables. 

 

• How to get )(xK y ? 

o  ∞−
=

x

yy duukxK )()(  

o For example in the uniform case,  

0 0

1
( )

2 2

1 1

x

y
y b

x y b x y b

x y b
K x du y b x y b y b x y b

b b

x y b x y b

−

< − < − 
  − + 

= − ≤ ≤ + = − ≤ ≤ + 
 

> + > +  

  
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• In the remaining of the course we will follow Definition 12.2 (14.2). However this is not the standard 

definition of a kernel density estimator. For a standard presentation, see Wasserman (2004). 

A kernel is any smooth function K  such that 0)( ≥xK , 1)( =
+∞

∞−
dxxK , 0)( =

+∞

∞−
dxxKx  and 

∞<= 
+∞

∞−
dxxKxK )(

22σ .  

Given a kernel  K  and a positive number h , called the bandwidth, the kernel density estimator is 

defined to be  =







 −
=

n

i

i
n

h

Xx
K

hn
xf

1

11
)(ˆ .  

Examples of kernels are: 

• The Gaussian kernel: ( ) 2/2/1 2

2)(
u

euK
−−

= π  

• The Epanechnikov kernel: ( )5
5

1
54

3
)(

2

<







−

×
= uI

u
uK  

• The uniform kernel: ( )1
2

1
)( ≤= uIuK  

• The triangular kernel: ( ) ( )11)( ≤−= uIuuK  
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All these kernels act symmetrically around each sample point. In this setup the choice of a particular 

kernel is generally much less important than the choice of the bandwidth. They are methods to 

approximate the “best” choice of the bandwidth (see Wasserman (2004)). 

• Example 12.13 (14.16) – Determine the kernel density estimate for Example 11.2 (13.2) using each of 

the three kernels. 

We will use only the uniform kernel with b=0.1 and b=1.0 (try b=0.5 and get the results for the other 

situations) 

 

Sample ( )1.0;1.3;1.5;1.5;2.1;2.1;2.1;2.8  

 

jy  1.0 1.3 1.5 2.1 2.8 

( )jp y  1/8 1/8 2/8 3/8 1/8 
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Bandwith b=0.1 then 1/ (2 ) 5b =  

1.0  

 

→ 

0.9 1.1 

1.3 1.2 1.4 

1.5 1.4 1.6 

2.1 2.0 2.2 

2.8 2.7 2.9 

 

5 / 8 0.9 1.1

5 / 8 1.2 1.4

10 / 8 1.4 1.6
ˆ( )

15 / 8 2.0 2.2

5 / 8 2.7 2.9

0 otherwise

x

x

x
f x

x

x

< <
 < <

 < <

= 
< <

 < <



   Discuss the problem related to the intervals limit  
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Bandwith b=1.0 then 1/ (2 ) 0.5b =  

 

1.0  

 

→ 

0.0 2.0 

1.3 0.3 2.3 

1.5 0.5 2.5 

2.1 1.1 3.1 

2.8 1.8 3.8 

 

1/16 0 0.3

2 /16 0.3 0.5

4 /16 0.5 1.1

7 /16 1.1 1.8

8 /16 1.8 2.0
ˆ( )

7 /16 2.0 2.3

6 /16 2.3 2.5

4 /16 2.5 3.1

1/16 3.1 3.8

0 otherwise

x

x

x

x

x
f x

x

x

x

x

< <
 < <

 < <


< <
 < <

= 
< <

 < <


< <
 < <


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Bandwith b=0.5 then 1/ (2 ) 1b =  

1.0  

 

→ 

0.5 1.5 

1.3 0.8 1.8 

1.5 1.0 2.0 

2.1 1.6 2.6 

2.8 2.3 3.3 

 

1/ 8 0.5 0.8

2 / 8 0.8 1.0

4 / 8 1.0 1.5

3 / 8 1.5 1.6

6 / 8 1.6 1.8
ˆ( )

5 / 8 1.8 2.0

3 / 8 2.0 2.3

4 / 8 2.3 2.6

1/ 8 2.6 3.3

0 otherwise

x

x

x

x

x
f x

x

x

x

x

< <
 < <

 < <


< <
 < <

= 
< <

 < <


< <
 < <


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Using R 

y=c(1.0,1.3,1.5,2.1,2.8); s=c(1,1,2,3,1); n=sum(s) 

p_y=s/n 

x=seq(0,4,by=0.025); fx=rep(NA,length(x)) 

 

# Uniform kernel 

b=0.5; LU=y-b; UU=y+b 

for(i in 1:length(x)) fx[i]=sum(p_y*dunif(x[i],LU,UU)) 

label.plot=paste("example 12.13 - Uniform kernel with b=",toString(b),sep="") 

plot(x,fx,type="l",main=label.plot) 

 

# Gamma kernel 

alpha=50 

for(i in 1:length(x)) fx[i]=sum(p_y*dgamma(x[i],shape=alpha,scale=y/alpha)) 

label.plot=paste("example 12.13 - Gamma kernel with alpha=",toString(alpha),sep="") 

plot(x,fx,type="l",main=label.plot) 
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• Example (New) – Using the data of the previous example estimate (2)F  using a uniform kernel with 

b=0.5.  

Sample ( )1.0;1.3;1.5;1.5;2.1;2.1;2.1;2.8  

 

jy  1.0 1.3 1.5 2.1 2.8 

( )jp y  1/8 1/8 2/8 3/8 1/8 

 

1 1 2 3 (2 2.1 0.5) 1ˆ (2) 1 1 1 0
8 8 8 8 1 8

5.2

8

F
− +

= × + × + × + × + ×

=


